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The x5o A—A zero-energy scattering length is calculated by solving the Schrodinger equation for the cou
pled A—A and 2—2 channels, using pionic exchange potentials (with hard core of radius xo) derived for the 
case of odd A—2 parity. Using the value of xo and the coupling constants /ss and gAS which fit the low-
energy A-N scattering data, the A—A interaction is found to be so strongly attractive as to bind in the Ŝo 
A —A state. Since the A—A interaction deduced phenomenologically from the analysis of A—A hypernuclei 
is not strong enough to bind, we conclude that the assumption of odd A—2 parity leads to contradictory 
results in the calculation of the low-energy A-N and A—A scattering. 

1. INTRODUCTION 

RECENTLY Dalitz and Rajasekaran1 have used 
variational procedures to calculate the binding 

energy B^A in the experimentally observed2 system 
AABe10 as a function of the A—A potential strength. 
With the experimentally observed value of BAA, the 
result given by these authors for the volume integral 
VAK of the x 5 0 A - A potential is 322±26 MeV F3 (assum
ing an intrinsic range of 1.482 F for the A—A potential3). 

The A—A force is expected to arise principally from 
the exchange of two pions. In addition, if one assumes 
a neutral vector boson coupled universally to all the 
baryons, there may be a repulsive core of radius 
#o~0.35 fjr1 dominating the inner region (/* = average 
pion mass =138.1 MeV/c2). The closed 2 —2 channel, 
coupled to the A—A channel by pionic exchange, may 
also contribute significantly. For even A—2 parity, for 
which there is good experimental evidence,4 de Swart5 

has given a discussion of the S-wave A—A interaction. 
For odd A—2 parity, the expressions for the A—A 
potential VAA (without the 2 —2 channel) have been 
given by Deloff6; however, if there is a hard core in the 
A—A force, and in addition also effects coming from the 
closed 2 — 2 channel, it is not evident what the net 
A—A interaction will be. The purpose of the present 
work is to calculate the zero-energy A—A scattering 
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length #AA for odd A—2 parity, including the effect of 
the closed 2 —2 channel and a hard core in the poten
tials. Here, the influence of the closed a — N channel 
will be neglected. For even 2 —A parity, a calculation7 

has shown its influence to be rather small; for odd 
parity, the coupling to the H — N channel is again 
through K and K* exchange, and the effect is again 
expected to be small. 

2. THE POTENTIALS 

Starting with the charge-independent Hamiltonian 
density 

+ (/2S /M)(47r)1 /2[StX^S.V^], (1) 

and deriving the potentials with the Brueckner-
Watson8 procedure, we obtain the following results: 

VAA=3gAJ(xXM+"XW), (2) 

V^--^gA^X^+2^f^g^(^Y^-xY^\ (3) 

7 2 S = „2f^VW+2f^(xVM+2nVM) 
+gAS

4 (x^ ( 4 )+3 / 7XW)-4/s s^A S
2 X£/ ( 4 ) . (4) 

U, V, X, and Y refer to the contributions of the 
various graphs to the potential. xUiA) is the contribu
tion to F s s of those fourth-order crossed graphs which 
have one A particle in the intermediate state. Fourth-
order uncrossed graphs with one A particle in the inter
mediate state do not contribute to a transition from an 
1=0 2—2 state to an 1=0 2—2 state. This is a conse
quence of the requirement of isotopic spin conservation, 
as can be seen by the following argument. The isotopic 
spin factors are the same for all uncrossed graphs which 
differ only by time ordering. So if the isospin factor is 
zero for one time ordering, it is zero for all time order=-
ings. But for those graphs whose time ordering is such 
that the intermediate state consists of one 2 particle 
and one A particle, the isotopic spin factor must be 

7 J. N. Pappademos, Phys. Rev. 134, B1132 (1964), following 

8 K. A. Brueckner and K. M. Watson, Phys. Rev. 92, 1023 
(1953). 
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zero, since isotopic spin is not conserved in the inter
mediate state for such graphs. 

F ( 2 ) , XV^\ and J / F ( 4 ) represent the contributions to 
V of the second-order graphs, and the fourth-order 
crossed and uncrossed graphs with two 2 particles in 
intermediate states. XX ( 4 ) and nX(4) are the contri
butions of the fourth-order crossed and uncrossed 
graphs to FAA. X^2) is the contribution of the second-
order graph to FAS, while J 7 F ( 4 ) and X F ( 4 ) are the 
contributions of the fourth-order uncrossed and crossed 
graphs to FAS. They are given by the expressions 

^FW = fFi.iraxFaW(«)+5iaxFr (4 )(a;), (5) 

WFW = <Fi-iF2//F/4>(*)+512JJFr<
4>(ic), (6) 

where % is measured in Yukawas (1 y u k a w a = l M"1 

= 1.4289 F). 
Although the channel mass difference A =153.8 

MeV/c2 is large, it turns out that the mass difference 
corrections9 to the range and strength of the second-
order transition potential vanish identically for the case 
of two equal mass particles in each channel. 

The Pauli principle limits the S-wave A—A inter
action to the 1S0 state. Hence, none of the tensor force 
terms in the above potentials will appear in the poten
tial matrix of our problem. Orbital angular momentum 
as well as spin are good quantum numbers, and the 
XS0 A—A state is connected only to the lS0 2—2 state. 

The momentum space integrals and radial depend
ences of all of the above potentials are listed in Appen
dices A and B, with the exception of F ( 2 ) , X F ( 4 ) , and 
7 i T ( 4 ) , which are given in Ref. 10. 

3. RESULTS 

In units of fi=c=l, the Schrodinger equation takes 
the form 

- (1/Af A)UA"+ VAA.UA+ F S A ^ S = EUA , 

- ( 1 / M ' S > S / / + F A S ^ A + ( F S S + A > S = ^ S , (7) 

where A=2(M 2 - M A ) , and UA and u? are the radial 
wave functions in the AA and 2 2 channels. The numer
ical values used were (in MeV/c2) MA= 1115.36 and 
Jkfs= 1192.3. The latter figure is an average over the 
members of the charge multiplet. Solving this equation 
numerically, the zero-energy scattering length #AA was 
obtained for various trial values of coupling constants. 
Some features of the numerical solution are discussed 
in Appendix C. The core radius used was 0.35 yr1. For 
this core, the values of gAs and / s s which lead to a fit 
to the observed A—N scattering length were found by 
de Swart and Iddings10 to be in the neighborhood of 
gAs=0.763, / 2 s = —0.150. Trial values of gAs and / s s 
close to the above values were chosen; the results are 

9 The reason for not including the mass difference corrections in 
the fourth-order potentials is discussed by de Swart and Iddings 
in Ref. 10. 
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TABLE I. J5o zero-energy scattering length #AA in Yukawas 
(1 yukawa = 1.4289 F). x0=0.35 /T1. 

gAS 

0.80 
0.76 
0.72 

/s2 = -0 .20 

1.173 
1.461 
1.864 

-0 .15 

1.216 
1.512 
1.939 

-0 .10 

1.238 
1.538 
1.979 

-0 .05 

1.248 
1.550 
1.998 

0.00 

1.251 
1.554 
2.003 

given in Table I. Since gAs enters to the fourth power in 
the diagonal potential F A A, while / s s does not even 
enter into FAA at all, one would expect the dependence 
on #AS to be quite strong, with a much weaker de
pendence on / s s ; this is found to be the case. For 
0.8<gAs<0.72, and - 0 . 2 < / s s < 0 , the zero-energy 
scattering length varies between the limits 1.17 jjr1 and 
2.00 ix~l. A positive scattering length can correspond to 
either a repulsive interaction, or an attraction strong 
enough to give rise to one or more bound states. One 
would not expect positive values of ^AA in this range to 
correspond to a repulsive A—A force, since the diagonal 
potential FAA consists of a hard core of radius X 0=0.35 
JJT1 plus an attractive tail.11 I t follows that if the force 
were repulsive, #AA would be positive but less than 
0.35 M-1- The effect of the closed 2—2J channel is to 
enhance the attraction.12 

Thus the values of #AA found for the above ranges of 
gAs and / s s suggest that this potential corresponds to 
the existence of one or more bound states. In order to 
ascertain how many bound states there are, and also to 
corroborate the conclusion that the A—A force is 
indicated to be attractive rather than repulsive, the 
value of #AA was calculated for values of gAs varying 
from 0.763 down to 0.15. The value o f / s s was held 
constant at —0.15, and XQ=0.35 JJT1. The results are 
shown in Table I I . For very small gAs, where the attrac
tive tail is practically negligible, #AA approaches the 
hard-sphere value 0.35/r-1. As gAs is increased, cor
responding to more and more attraction, #AA at first 

TABLE II. Variation of x5o A—A zero-energy scattering length 
#AA with gAS-/ss= — 0.15. #o = 0.35 /T*1. 

#AS #AA, A X 

0.763 1.487 
0.650 5.026 
0.625 29.4 
0.600 -5 .38 
0.575 -2.010 
0.550 -1.026 
0.450 0.0108 
0.350 0.248 
0.250 0.325 
0.150 0.347 

11 Both the crossed and uncrossed diagram contributions to FAA 
are attractive. 

12 This can be understood by recalling that the energy correction 
caused by second-order transitions to virtual states lying higher 
in energy is always negative. 
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TABLE III. Variation of zero-energy ^o A—A scattering length 
0AA with hard-core radius, for gAS=0.763, /ss— —0.15. 

#0, M #AA, M 

0.35 
0.36 
0.40 
0.44 
0.48 
0.52 
0.56 
0.60 
0.64 
0.68 

1.49 
1.57 
1.98 
2.56 
3.64 
6.73 

2296. 
- 5 . 2 8 
- 2 . 1 8 
- 1 . 1 2 

decreases to zero, then goes to very large negative 
values changing finally to positive values as the attrac
tion becomes sufficient for binding. No more sign 
changes occur before #AA reaches the value 1.487 fjr1 

(at £ A S = 0.763) and we conclude that values of #AS in 
this neighborhood give rise to only one bound state. 

The 1SQ zero-energy A—A scattering length has been 
estimated by Dalitz and Rajasekaran1 (using the data 
from the AABC10 event observed by Danysz et alP) to 
be <*AA= - 1.76db0.33 F (= - 1 . 2 3 M"1)-13 This cor
responds to an attractive force, though not strong 
enough to give binding. 

Thus, the available experimental information on the 
low-energy A—A interaction is in contradiction with the 
results of a calculation which is based on the assumption 
of odd 2—A parity and which uses the same combina
tion of hard-core radius, / s s and gAs which fit the low-
energy A—N scattering data. If one did not require the 
cores in the A—N and A—A interactions to be equal in 
radius, then a simultaneous fit to the A—A and A—N 
data could be obtained with the same values of #AS and 
/ s s . Dalitz14 has advanced an argument favoring a 
somewhat larger core («0.48 F) in the A—A system 
than in the 1So A—N system. However, a calculation 
of #AA for various core radii (and / s s = — 0.150, 
£ A S = 0.763), the results of which are presented in Table 
I I I , shows that the hard-core radius in the A—A 
system must be increased to the neighborhood of 
Xo= 0.68 jit"1 (0.94 F) in order to fit the value #AA 
= — 1.23 ix"1. We conclude that unless the hard core in 
the A—A system is very much larger than the hard core 
in the 1SQA—N system, in fact unreasonably large, the 
assumption of odd parity leads to contradictory results 
in calculation of the low-energy 1So A — N and 1SQA—A 

interactions. This result is in agreement with the experi
mental evidence4 on the relative A—2 parity. 
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APPENDIX A: LIST OF MOMENTUM 
SPACE INTEGRALS 

* X < 4 > = -

8TT4 W 4 M 3 & V ( k + k / ) - x -

X ( 2 ) = -

^7(4) : 

8TT4 

— M 

2TT2 

— M 

8TT4 

"X<4> = — ^ M 3 ^ ^ ( k + k , ) - x -

o>2+a/2+coa/ 
K 

coV3(co+a/) ' 

1 

a>V2(co+a/) 

dzk-

dzkdik'-
ffa-kWkV(k+k/)-x 

2(to+c/) 

(Al) 

(A2) 

(A3) 

(A4) 

8TT4 

X J 7 < 4 ) = 

8^4 

X F ( 4 ) = _ _ ldM#«h-±0a-V 

X ^ k + k O - x . 
co2+a/2+coa/ 

c „ _ _ _ , 

a>V8(co+u') 

d a f o / a & ' o v k o v k ' 

Xe i(k+k')-x_ 
co2+co'2+coa/ 

A/3(«+w') ' 

(A5) 

(A6) 

The momentum space integrals for F<2), XVW, and 
11 Vw may be found in Ref. 10. 

APPENDIX B: RADIAL FUNCTIONS 
DESCRIBING THE POTENTIALS 

X«>=p(-2/x)e-', (Bl) 

xY.w = (l /3x)[(3/a?)Jr1(2*)+ (2 /*)£ 0 (2*) ] , (B2) 

*YTW= (l/3r)t(3/a?)Ki(2x)+ (2/x)K0(2x)l, (B3) 

"F,w=(l /3x)C(«- /*»)(2«K: , (*) - j r 1 (a ; ) ) 

-(l/xi)(2xK0(2x)-K1(2xm, (B4) 

UYT (4) = (l/3w)le-*K0(x) (2/x+3/x*+3/r>) 

+ (2e~-/x^)K1(x) - (5/x*)Kx(2x) 

-(2/*+3/a*)ITo(2«)]> (B5) 

xX^=-!x(2/vx)K,(2x), (B6) 

" I ( 4 ) = -*(2/irx)[r*K* (*) -K o(2*)], (B7) 

**/«> = -n(l/ir)l(3/x*)K1(2x)+ (2/x)K0(2x)1, (B8) 
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in which the functions Kn(x) are given by 

Kn(x)^—{-) / —~dk. (B9) 
TT1'2 W J (F+l)^1'2 

The radial functions for F(2), XF ( 4 ) , and / J F ( 4 ) are to be 
found in Ref. 10. 

APPENDIX C: NUMERICAL SOLUTION OF THE 
SCHRODINGER EQUATION 

The procedure followed in integrating the wave 
equation has been discussed previously.15 In the present 
problem, where there is only one orbital angular momen
tum channel, the two independent solutions of the wave 
equation are combined into a 2X2 wave function 
matrix \j/. At the outer edge of the hard core the ele
ments of \p are set equal to zero, while the slopes of the 
11 and 22 elements are arbitrarily set equal to unity. 
Values of $ are computed successively, by use of the 
NoumanofT approximation to the differential equation, 
at intervals of 0.01 /x_1 out to x= 1.0 /x_1, then at inter
vals of 0.02 ix~l out to x= 5.0 JJT1. At this point the linear 
combination of the two independent solutions for \p is 
determined to match an outer wave function consisting 
of a sine wave in the open channel and a damped 
exponential in the closed channel. In this case it was 
found that the cumulative errors in the numerical 
solution for \f/ were so large as to cause the matching 
conditions to yield completely erratic results; the 
difficulty was cleared up by carrying out the calculation 
at 16 significant figure accuracy instead of the 8 sig
nificant figure accuracy customarily used in IBM-7094 
calculations. 

In order to understand qualitatively the reason for 
this difficulty,16 a model two-channel problem was set 
up in which all of the potentials consisted of a hard 
repulsive core of common radius, followed by attractive 
rectangular wells of depths VL, VS, and VLS for the 
A—A, 2—2 and transition potentials, respectively. The 
radius x\ was used for all of the wells. For the 1So A—A 

16 J. J. de Swart and C. Dullemond, Ann. Phys. (N. Y.) 16, 263 
(1961). 

16 We have found that good results were obtained with only 8 
significant figure accuracy in other cases, e.g., the case in which 
the closed channel is the H—N channel and even A—2 parity 
potentials used. 

state, the Schrodinger equation for the region within 
the well reads (for zero energy) 

U^'+MAVLUI+MAVLSUZ^O , 

uxf/+MzVLsUz+[(Vs-A)Mi]u2==0, (CI) 

where UA and u% are the wave functions in the A—A and 
2—2 channels, MA and Mx are the A and 2 masses, and 
A is twice the A—2 mass difference. On assuming solu
tions of the form 

UA=A cos(nx-^re), 

us= B cos(nx-\-e). 

We find that the eigenvalues of n are given by 

n^i{MAVL+(Vs-A)M^±l(MAVL-(Vs-A)M^ 
+4MAMZVLS

2J12}. (C3) 

In case Fs>A, we see that solutions with n real exist, 
provided the condition 

VLS2<VL(VS-A) (C4) 

is met. In case Vs< A, we find that n is real if the posi
tive sign in (C3) is chosen, imaginary if the minus sign 
is used. Thus, the wave function within the well is a 
linear combination of oscillatory and exponential parts. 
In the actual AA—22 problem with odd-parity poten
tials, two characteristic features stand out: (1) The 
transition potential FAS tends to be very strong as well 
as long ranged by comparison with FAA and Fss, (2) 
the channel mass difference A is large, about 134 
MeV/c2. In making the comparison with our model 
problem, we should take A and VLS large by comparison 
with Vs and VL. If, in Eq. (C3), we neglect Vs and VL, 
we see that the characteristic length X of the exponential 
part of the wave function is given by 

(MsA r / ^ s A \ 2 -.1/21-i/2 
X« +\l \+MAM*V*LS\ . (C5) 

From this we see that the wave function in the actual 
problem will have a very rapid exponential increase 
with r. The corresponding exponential increase in the 
rounding-off errors makes it extremely difficult to 
accurately match this solution to the exponentially 
decreasing solution which we want in the exterior 
region. 


